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The present work uses a perturbation procedure to deduce the small perturbation differential

equations  for  velocity,  temperature,  and  the  diffusion  equation  for  nanoparticle  volume

concentration.  Thermalphysical  variables  are  obtained  from  conventional  means  (e.g.,

mixture  and  field  theory  estimates)  for  nanofluids  consisting  of  alumina  nanoparticles

dispersed in water (alumina-water nanofluid) and gold nanoparticles dispersed in water (gold-

water nanofluid), and, in the case of gold-water nanofluid, molecular dynamics results are

used to estimate such properties, including the transport coefficients. The very thin diffusion

layer,  at  large  Schmidt  numbers,  is  found  to  have  a  great  impact  on  the  velocity  and

temperature  profiles,  owing  to  the  transport  property  dependency  and  has  a  profound

influence on surface conduction heat transfer rate enhancement and skin friction suppression

for the case of nanofluid concentration withdrawal at the wall. In this case, the diffusional

heat  transfer  rate  is  negligible,  again,  owing  to  the  large  Schmidt  numbers  encountered.

Possible experiments directed at this interesting phenomenon are discussed.
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INTRODUCTION

“Nanofluids” is commonly understood as fluids containing well-dispersed and dilute

particles  of  nanometer  dimensions,  usually  metallic.  Its  designation  was  given  in  the

pioneering work of Choi [1].  The attraction is that nanofluids have thermal conductivities

superior to that of the base fluid and that, when used in micronsized channels or tubes, could

promote surface heat transfer rate enhancement and yet will less likely to cause blockage.

The applications of nanofluids were reviewed in the book by Das et al. [2] and by Das, et al.

[3],  and  more  recently,  the  properties  of  nanofluids  by  Paolucci  and  Puliti  [4].  Very

comprehensive  measurements  of  nanofluid  thermal  conductivity  by  multiple  laboratories

were reported by Buongiormo, et al. [5] and that of viscosity measurements by Venerus, et al.

[6]. The thermal conductivity measurements did not show the spectacular enhancement as

anticipated earlier, but more aligned with mean field theories of Maxwell [7] and Rayleigh

[8] and their variants. Although at the time of Maxwell and Rayleigh when “nano” was not

common, present researchers adopted their formalism of “small” obstructions embedded in

fluids  to  nanofluids  (e.g.,  [5]).  Viscosity  measurements  of  well-dispersed  nanoparticles

exhibited a Newtonian fluid behavior [6].

The question  that  naturally  arises  is  that  what  are  the  convective  effects,  such as

forced convection nanofluid flow in a boundary layer, which resembles the leading edge and

entrance region of flow in channels and tubes as observed by Wen and Ding [9] and Jung et

al. [10], among others. If we focus on surface heat transfer rate owing to thermal conduction

alone, while nanofluid thermal conductivity enhances the surface heat transfer rate explicitly

in  the  Fourier  relation.  Enhanced  thermal  conductivity  also  spreads  out  the  temperature

profile according to the thermal boundary layer equation and thus tends to decreases surface

heat transfer rate. Forced convection effects, or inertia effects, have the tendency to steepen

the temperature profile. These mechanisms are brought out in the small nanofluid volume
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fraction perturbation theory for plug flow [11] and for the laminar  boundary layer in the

special case of zero volume fraction flux at a solid wall [12].

The general formulation [13] of convective heat transfer in a nanofluid brings in the

possibility  of  diffusion  flux transport  of  thermal  energy owing to Brownian diffusion  of

nanoparticles in Einstein’s sense [14]. It is the assessment of the relative magnitude of this

additional heat transfer mechanism relative to conduction heat transfer in boundary layers

[12] that is a central discussion in the present paper. 

LAMINAR BOUNDARY LAYER EQUATIONS FOR A NANOFLUID

The  continuum  description  of  nanofluid  flow  and  heat  transfer  is  presented  by

Buongiorno  [13].  The  fundamental  equations  in  boundary  layer  form  are  obtained  by

Pfautsch [15]. Based on a perturbation theory motivated by the experimental prevalence of

small nanoparticle volume fraction, applications to the Rayleigh-Stokes flow, or plug flow, is

given by Liu [11] and to boundary layers for uniform volume fraction by Liu et al. [12]. The

latter is brought about by zero-nanofluid volume flux at a solid wall.  Before studying the

laminar boundary layer equations in detail for the active participation of nanofluid volume

fraction diffusion,  it  would be helpful  to obtain an estimate  of the relative  magnitude  of

thermal energy transfer by heat conduction and by diffusion. 

It  is  already  estimated  that  the  effects  of  thermal  diffusion  is  relatively  weak

compared  to  the  possibility  of  mass  diffusion  by  the  Einstein  mechanism  [14]  of

bombardment of nanoparticles by the random motion of the base-fluid molecules [13]. Thus,

it is sufficient to treat the diffusion process as one of binary diffusion for which the diffusion

current, relative to a mass averaged velocity, is approximated by Fick’s Law in terms of the

nanofluid mass fraction. The Brownian diffusion coefficient is then identified with the binary

diffusion coefficient.  The mass  fraction,  in  turn,  is  converted  to  the nanoparticle  volume
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fraction for dilute concentration. This then, is the thought process leading to the diffusion

equation presented by Buongiorno [13], following the formalisms in texts and monographs

on transport phenomena and physicochemical hydrodynamics [16,17].  A recent review of the

continuum description of nanofluid is given by Nield and Kuznetsov [18], but the nanofluid

properties discussed did not progress from the mixture theory.

The boundary layer form of the heat transfer rate is

                                        eq. (1)

where  is  the  nanoparticle  phase  diffusion  current  and  is,  in  terms  of  the  nanoparticle

volume fraction , equal to  to order  for , after relating the

mass fraction to volume fraction.  The heat transfer rate, for nonuniform distribution of the

nanoparticle  concentration,  now  includes  the  diffusion  current  transport  of  nanoparticle

thermal energy . This is reminiscent of the discussion of heat transfer a reacting fluid [19].

In order to analyze the surface heat transfer rate, the boundary layer profiles from the

conservation equations need to be solved, subject to boundary conditions.  Aside from the

inherent interest of boundary layers, they are also important to the study the entrance region

of channels and tubes where the observed nanofluid heat transfer enhancement is much more

“spectacular”  that  the  downstream developed region.  For  simplicity,  the  two-dimensional

system at  constant  pressure  is  studied,  from which  complex  extensions  could  always  be

made.

 Continuity equation 

                                                                                                eq. (2)
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                                                                              eq. (3)

Energy equation

                                                eq. (4)

Volume fraction diffusion equation

                                                                                 eq. (5)

The energy equation is written in “incompressible” form in the sense of Lagerstrom [20]: for

low Mach numbers, the rate of viscous dissipation is neglected as well as the work done by

the pressure gradient; the transport properties are functions only of the volume fraction and

otherwise in their small temperature-loading form. The nanofluid static enthalpy is ,

where   is  the nanofluid heat  capacity  and is  a function of the volume fraction  .  The

nanoparticle phase static enthalpy is , where  is the nanoparticle heat capacity.

The base fluid and nanoparticles are considered to be in thermal equilibrium [13] and thus

they have the same absolute temperature . 

The other thermophysical properties such as nanofluid density and heat capacity, are

functions of the nanofluid volume fraction. These “equations of state” are discussed in the

next section. 

The boundary conditions are

                                                                      eq. (6)

The boundary condition for the volume fraction corresponding to zero flux at a solid wall,
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thermal conduction alone, devoid participation of the diffusional current transport of thermal

energy [12]. The condition   corresponds to the situation of a porous wall in

which the levels of volume fraction at  could be maintained. This situation, which give rise to

nanoparticle diffusion current, will contribute to the diffusional transport of thermal energy as

an additional contributing factor the heat transfer rate at the wall as well as giving rise to

variations of volume fraction-dependent thermophsical properties.

THERMOPHYSICAL PROPERTIES

Enhanced thermal conductivity of nanofluids incited the initial enthusiastic studies of

such fluids for cooling purposes  [1-3]. Since then, benchmark measurements of nanofluid

conductivities through efforts of a wide assembly of laboratories have been reported [5] as

well as that for viscosity [6]. It appears that thermal conductivities are more aligned with field

theories  and that  nanofluids  behave very much like  a  Newtonian  fluid.   Thermophysical

properties are expressible in terms of the volume fraction, particularly in terms of ascending

powers of  with the slope at as coefficient of the first linear term. It is found that this

is convenient in that the slope could be evaluated using mixture theory such as for density

and heat capacity, or from molecular dynamics simulation results. Transport coefficients are

measured and expressed as a similar representation in terms of   as are expressions from

field  theories  and  simulations.  The  dimensionless  density  and  density-heat  capacity  are

represented as

                                                              eq. (7)
                    

                                                   eq. (8)
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where the prime indicates differentiation with respect to the volume fraction is normalized by

that  in  the  free  stream.  The  dynamic  viscosity  and  thermal  conductivity  are  similarly

expressed as

                                                      eq. (9)

                                                  eq.  (10)

where the dimensionless volume fraction distribution is defined as F=f f¥ . The free stream

volume  fraction  is  low,  ,  which  is  prevalent  in  experimental  measurements  and

commensurate  with  dilute  nanoparticle  concentration  for  nanofluids.  It  is  the  natural

expansion parameter in a simple perturbation theory [11]. 

The diffusion  coefficient,  which  is  identified  with  that  for  Brownian diffusion,  is

[13,14]

                                            
D=kBT 6pm f rd                     eq. (11)

Recollecting that  the reduction to “incompressible” form of the basic equations  in

fluid mechanics, Lagerstrom [20] discussed the double expansion in terms of the (low) Mach

number and small relative temperature loading, which rendered the viscosity coefficient and

thermal  conductivity  to  be  independent  of  the  temperature.  The  Brownian  diffusion

coefficient, which is explicitly expressed as a linear function of the temperature, is taken as

constant.  The temperature  in  which  the  transport  coefficients  are  evaluated  would  be  an

averaged temperature.
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PERTURBATION EXPANSION FOR <<1

The thermophysical properties are already in an ascending series in the perturbation

parameter  ,  the  dependent  variables,  symbolically  represented  by  ,  are  expanded

accordingly as

                                                              eq. (12)

where the zeroth order is that of the base fluid, devoid of nanoparticles, the first order term is

the  nanofluid  perturbation  for  small  volume  fraction.  One  can  always  perform  the

perturbation expansion on the physical conservation equations, and subsequently seek similar

solutions  for  the first  order  perturbation.  The zeroth  order  velocity  is  that  of the Blasius

function  and  the  temperature  that  of  Pohlhausen  function  for  heat  transfer  discussed

extensively in Schlichting [21]. 

After straightforward manipulations, the resulting zeroth and first order problems are

recast into the Blasius similarity dependent variable 
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The perturbation expansion (12) and the implied expansions of the properties (6) and

(8) and the similarity variable transform (13)-(15) applied to the continuity and momentum

equations (2) and (3) result in the sequence of problems. The zeroth order velocity function is

the Blasius function, it is stated as it is an input to the perturbation velocity function

                                                         eq. (16)

The first  order  nanofluid  velocity  function  is  subjected  to  the volume fraction-dependent

viscosity coefficient, which accounts for the presence of  and  associated with ,

while  †he  inertia  effect  of  the  nanofluid  density,  which  is  volume fraction-dependent,  is

reflected in   associated with   but has been moved from the inertia-left side to the

right side

                eq.  (17)

The  boundary  conditions  are  already  satisfied  by  the  zeroth  order  problem,  thus  the

inhomogeneous first order problem satisfy homogeneous boundary conditions. The volume

fraction-dependent has its effect only when there is a volume fraction gradient, reflected by

the presence of  in the differential equation on (17). This explicit dependence is lost in

the case when  is uniform across the boundary layer as in the case of zero-nanoparticle flux

at the wall [12] where  in consideration of the diffusion equation (5) for the zero-flux

boundary condition.

Similar expansion using (8) and (10) and defining the dimensionless temperature as
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problems as for the velocity problem. The zeroth order problem is just that of Pohlhausen’s

(see Schlichting [20]) heat transfer problem, where  is similarly expanded as in (12)

                                                         eq. (18)

The first order temperature problem is   eq. (19)

As with the velocity profile, the boundary conditions are already satisfied by the zeroth order

problem,  thus  the  inhomogeneous  first  order  problem  satisfies  homogeneous  boundary

conditions. The effect of the thermal conductivity’s dependence on the volume fraction is

reflected by terms associated with  .  That  associated  with the inertia  effect  of heat

capacity,  which  originally  is  on  the  left-hand side,  is  associated  with  .  The

mechanism of diffusion current in transporting thermal energy is reflected in the last term in

(19) where the diffusion coefficient is buried in the base-fluid Schmidt number. This has an

effect as long as the volume fraction, from the diffusion equation (5), is nonuniform across

the boundary layer.

The volume fraction is already a first order perturbation as the zeroth problem is for

the base  fluid and absence  of  nanoparticles  through the  formalism of  expansion (12).  In

similarity form, the normalized volume fraction satisfies

                                                       eq. (20)

Solutions of the similarity problems

The Blasius solution for (16) is well known [21] but it is numerically solved again

because of its necessary input to all the first order nanofluid problems (17), (19), (20) which

require numerical solution. 

q
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The zeroth order temperature problem (18) yields the Pohlhausen integral in terms of

the Blasius function [20]

       eq. (21)

It is actually more convenient to solve (18) numerically for input to the first order problem

(19) than to use the numerical evaluation of the integrals in terms of the Blasius velocity

functions. Nevertheless, the correlation of results of the latter gives a convenient formula for

the heat transfer parameter [21]

                                                                                      eq. (22)

in the range .

The volume fraction diffusion equation (20) for  is similar to that for  except for

the boundary conditions and presence of 
 
in place of . If we let ,

which is independent of the wall value , and which also satisfies a similar dimensionless

differential equation with the same boundary conditions as , but with replacing , 

                                                         eq. (23)

then

                      eq. (24)

for which the wall parameter, inferred from [21], is 

                                                                    eq. (25)

for . The dimensionless volume fraction  is thus
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                                       eq. (26)

It can be easily observed from the homogeneous volume fraction diffusion equation (19) that

the condition of zero flux at  the wall  [12] is equivalent  to the solution for the boundary

condition ,  which  gives  a  constant  volume  fraction  distribution  

throughout the boundary layer according to eq. (26).

RESULTS FOR ALUMINA-WATER NANOFLUID

Properties for alumina are available from mixture calculations, where the respective

slopes  are  obtained  by  using  mixture  formulas  .  For

dilute spherical nanoparticles, the nanofluid behaves like a Newtonian fluid and Einstein’s

result   is satisfactory  [6, 13]. The classical result from Maxwell  [5, 7, 13]

gives  .  But  Wen and Ding’s  [9]  explicit  measurements  in  water-based

aluminum oxide gave , which will be used here.                             

The  zeroth  order  Blasius  velocity  profile   and  the  Pohlhausen  temperature

profile   for  the  base  fluid,  in  absence  of  nanoparticles,  are  shown in  Figure  1  as

F(h;Scf )=1+(FW - 1)j(h;Scf )
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(k* ¢)f=0,Maxwell =3.00

(k* ¢)f=0,Wen&Ding=6.00
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reference to compare with the perturbation profiles to follow.  The influence of nanofluid

volume fraction at the wall is reflected by the three values of the boundary condition chosen, .

.  The  condition  unity  is  the  “insulated  wall”  case  where  there  is  zero

nanoparticle flux at the wall (Figure 2). 

The condition implies a depletion of nanoparticle concentration at the wall,

for instance, through a porous matrix at the wall. The sharp gradient in  near the wall in

a very thin concentration layer for large  , causes reversals in both   and

 as shown in Figure 3a. The wall region is shown in in Figure 3b. The ratio of the very

thin diffusion layer relative to the thermal layer is estimated by ,

as depicted  in  Figures 3a and 3b. The Schmidt  number value is  estimated  by taking the

average  nanoparticle  diameter  to  be  approximately  10nm.  The  Schmidt  number

correspondingly  decreases  as  the  nanoparticle  average  diameter  increases  so  that

 for 100nm diameter; in any case, the diffusion layer remains relatively very thin

and the qualitative effects are expected to be similar.

F(0)=0, 1, 2

F(0)=0

F(h)

Scf =2 1́04
q1(h)

¢f1(h)

dF /dq »(Prf /Scf )
1/2 »0.02

Scf »2 1́03

dF /dq »0.06
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For  the   case,  which  implies  that  there  is  added  concentration  of

nanoparticles near the wall than that of the “insulated wall” case (Figure 2), the effect of the

diffusion layer is to steepen the  and  profiles (Figure 4a) within the region of the

thin diffusion layer in Figure 4b.

The wall region effect of the diffusion layer is summarized in Table 1 for the three-

boundary value of  of the first column.

We are reminded that  is a function of the Blasius solution and  according to eq. (26) and eq. 

(24).

RESULTS FOR GOLD-WATER NANOFLUIDS

There are two cases with respect to the manner in which thermophysical properties

are estimated. One is using mixture theory to evaluate the density and heat capacity, which is

known to be somewhat questionable in spite of their prevalent use. The other is to estimate

properties from molecular dynamics results, including transport properties. The latter, which

is more fundamental, has become available recently for, in particular, gold-water nanofluids

in publications associated with Puliti [22, 23]. 

Mixture Results

We return to the representation of properties as functions of the nanoparticle volume

fraction as (7)-(10). Mixture results  for the gold-water nanofluid density and density-heat

capacity  product  in  terms  of  the  slopes  at  zero  nanofluid  volume  fraction  are

F(0)=2.0

q1(h) ¢¢f1(h)

F(0)
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 and  . The viscosity coefficient slope is also taken to

be that from Einstein’s value  The Maxwell-Lord Rayleigh estimate of the

thermal conductivity is used, for which . These are summarized in [12].

The   case, which represent a depletion of nanoparticles (Figures 5a, 5b) is

modified  from  the  zero-flux  solid  wall  case  of  Figure  6.  The  negative  slope  of  the

perturbation temperature profile in Figure 6 is rendered more negative in Figures 5a and 5b;

for  , Figures 7a and 7b, the perturbation temperature slope near the wall becomes

positive. The slope of the perturbation velocity profile is already positive for the solid wall

case (Figure 6), the depletion condition  F(0)=0  has the similar  effect  of decreasing the

velocity slope near the wall, while the   condition increases the perturbation velocity

profile slope (Figure 7a and 7b). These effects are summarized in Table 2.

Properties estimated from Molecular Dynamics

It  is  generally  regarded  that  the  properties  estimated  from  molecular  dynamics

computations [4, 21, 22] would be fundamental compared to that obtained my postulating a

mixture for the nanofluid. It is fortunate that molecular dynamics thermophysical property

(r* ¢)f=0,MIX =18.30 (r*c* ¢)f=0,MIX =- 0.42

(m* ¢)f=0,mix=2.50.

(k* ¢)f=0,Maxwell =3

F(0)=0

F(0)=2

F(0)=2
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results  are  available  for  gold-water  nanofluid  so  that  their  utilization  in  the  continuum

description of gold-water nanofluid flow and hear transfer can be compared to that using

mixture property results for the “porous matrix wall” calculations at differing wall boundary

conditions for the nanofluid volume fraction. Summarized in [12] are the estimates obtained

from molecular dynamics  results [21, 22], referring to the representation depicted in (12):

 Molecular  dynamics  simulation  for  viscosity  and

thermal conductivity of gold-water nanofluids appear only in the thesis of Puliti [21] and are

subjected to interpretation in order to bring the results into practical usage form [12] which

resulted in the values used in the present paper,  

The  solid  wall,  zero  flux  results  (Figure  8) for  which   throughout  the

boundary layer, are qualitatively similar to the   (Figure 9a) and   (Figure

10a) only in the outer regions of the boundary layer. The inner regions of both first order

temperature  and velocity  profiles  subjected to the depletion boundary condition  

show reversals Figures 9a and 9b as influenced by the sharp volume concentration layer. In

contrast,  the  inner  region  of  the  boundary  layer  subjected  to  the  additional  volume

concentration  through the thin concentration layer increases the steepness of both

the first order velocity and temperature profiles (Figure 10a and 10b) in comparison with the

(r* ¢)f=0,MD =18.7, (r*c* ¢)f=0,MD =- 2.37.

(m* ¢)f=0,MD =10, (k* ¢)f=0,MD =20.

F(h)=1

F(0)=0 F(0)=2

F(0)=0

F(0)=2
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“insulated wall” case of Figure 8. A summary of the wall slope values is shown in Table 3.

These wall values are incorporated into the relations for surface shear stress and surface heat

transfer rates in the next section, where contrasts are brought out between properties based on

mixture  of  gases  and  the  results  based  on  the  fundamental  properties  estimated  from

molecular dynamics for gold-water nanofluids.

SURFACE HEAT TRANSFER RATE

The heat transfer rate from (1), with the use of the volume fraction in the diffusion

current relation and evaluated at the surface, (denoted by subscript ) is

       eq. (27)

The  surface  heat  transfer  rate  here  consists  of  thermal  conduction,  denoted  by

; the surface heat transfer rate due to the transport of thermal energy (

) by the diffusion current is denoted by . It was shown that

the  nonuniformity  of  the  nanofluid  volume  fraction  distribution  has  an  effect  on  the

temperature profile near the wall and on the thermal conductivity, i.e., the volume fraction

diffusion effect also has an impact on the surface heat transfer rate due to thermal conduction.

Using  the  similarity  transformation  (13),  the  derivatives  are  recast  into  

derivatives and through the normalization by the surface heat transfer for the base fluid, the
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qW =- k
¶T
¶y

+rpD
¶f

¶y
hp

é

ë
ê

ù

û
ú
W

qW,C =- (k¶T /¶y)W

hp=cpT qW,D =- (rphpD¶f ¶y)W

y- h -
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normalized conduction heat transfer rate becomes

                        eq. (28)

The dimensionless surface heat transfer rate is denoted by . The dependence of the first

order  temperature  perturbation   on  the  Schmidt  number  is  indicated  by  its

differential  equation (19). A correlation of   in terms of   is not available  as

, which is obtained by Pohlhausen [21] and given by (22). The similarity behavior of

the first order problem, in the Blasius sense, enabled the canceling out of the  factor in

the enhanced surface heat transfer relation upon normalization by . 

The surface  heat  transfer  rate  due  to  diffusion  effects,  when  normalized  by  

becomes

                       eq. (29)

where the corresponding dimensionless surface heat transfer rate is defined as . The ratio

qW,C
* ºqW,C /qW, f =1+f¥ (k* ¢)f=0 + ¢q1(0;Prf ,Scf ) / ¢q0(0;Prf )é

ë
ù
û

qW,C
*

q1(h;Prf ,Scf )

¢q1(0) Prf , Scf

¢q0 (0;Pr)

x- 1/2

qW, f

qW, f

qW,D
* ºqW,D /qW, f =f¥rp

*cp
*[(FW - 1) / (1- T¥ /TW)](Prf /Scf )j '(0) / ¢q0 (0)

qW,D
*
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is actually , where  is a Lewis number.  In this definition, the factor ,

which  is  the  perturbation  parameter  in  the  present  formulation,  is  removed  from  the

denominator in  Buongiorno’s [13] definition.   In view of the correlations from numerical

solution  result,  (22)  and (25),  for Prandtl  and Schmidt  number ranges appropriate  to  the

present problem ( =7, ), eq. (29) becomes

                                       eq. (30)

To interpret the diffusion transport of thermal energy effect on surface heat transfer rate, first,

the normalizing base fluid convective-conduction heat transfer rate is positive,   if

; i.e., the hotter wall loses heat to the cooler freestream. This situation is retained in

the following discussion. The diffusion heat flux, on the other hand, even if   in  eq.

(30), depends  on  the  sign  of  .  If  ,  there  is  a  depletion  of  nanofluid

concentration  at  the  wall  and the  diffusion  current  would  be towards  the  wall  and there

negative, thus rendering . On the other hand, if there is a surplus of nanofluid

concentration near the wall, , the diffusion current is directed away from the wall and

(Prf /Scf ) (Lef )
- 1 Lef f¥

Prf Scf @2 1́04

qW,D
* =qW,D /qW, f =f¥rp

*cp
*[(FW - 1) / (1- T¥ /TW )]1.02(Lef )

- 2/3

qW, f > 0

TW >T¥

TW >T¥

(FW - 1) FW <1

qW,D /qW, f < 0

FW >1
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eq.  (30) indicates  .  Thus,  heat  is  transferred  away  from  the  wall  by  the

diffusion  current  and  thus  the  nanofluid  conduction  enhancement  given  by  eq.  (28) is

augmented by the nanoparticle diffusion transport effect given by eq. (30).

In  the  first  order  perturbation,  the  enhancement  is  a  linear  function  of  ,  it  is

instructive to obtain the numerical values of the slope of the corresponding rates at the origin

of  , [reminiscent of the thermophysical properties (7)-(10)]. In dimensionless form,

the surface heat transfer rates are recast as

                                       eq. (31)

where , the dimensionless form of eq. (27), and the slopes at the origin of the

volume fraction are obtained from the right hand sides of eqs. (28) and (30), respectively.

                 eq. (32)

         eq. (33)

recalling primes associated with the sub-designations  , such as   and  ,

qW,D /qW, f > 0

f¥

f¥ =0

(qW
* - 1) /f¥ =(q*W,C ¢)f=0 +(qW,D

* ¢)f=0

qW
* =qW /qW, f

(q*W,C ¢)f=0 = (k* ¢)f=0 + ¢q1(0;Prf ,Scf ) / ¢q0 (0;Prf )é
ë

ù
û

(qW,D
* ¢)f=0 =rp

*cp
*[(FW - 1) / (1- T¥ /TW)]1.02(Lef )

- 2/3

f =0 (q*W,C ¢)f=0 (k* ¢)f=0
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indicate differentiation with respect to  ,  whereas primes associated with boundary layer

functions indicate differentiation with respect to . 

Because of the large Lewis numbers encountered (which will decrease as the average

nanoparticle  diameters  increase),  it  is  expected  that  ,  for  reasonable

values.  Thus,  the  direct  thermal  energy  transfer  by  the  diffusion  current  as  a

contribution to surface heat transfer rates, is relatively small. However, the steep variation of

the concentration profiles near the wall has a much greater impact on the wall values of the

first order temperature perturbation.  

The  results  in  Tables  1  through  3  show  considerable  influence  of  the  steep

concentration  diffusion  layer  on  the  first  order  hear  transfer  parameter,  .  To  best

illustrate  this,  the  parameter   under  the  influence  of  the  steep  diffusion  layer  is

normalized by that the “insulated” zero-flux solid wall concentration layer [12]. 

The effect of the diffusion layer on  is normalized by the case in which there is

no variation of concentration across the boundary layer reflected by the middle column. The

diffusional layer effect is thus compared to unity. The results are for  as

f

h

(qW,D
* ¢)f=0 << (q*W,C ¢)f=0

TW /T¥

¢q1(0)

¢q1(0)

¢q1(0)

Prf =7, Scf =2 1́04
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depicted by the profiles in Figures 2 through 10. In the case for depletion of concentration at

the wall,  Figure 3 shows that the first order temperature profile is reversed, caused by the

steep diffusion layer, where the diffusion flux is pointed inwards into the boundary layer

compared to that when there is no diffusion layer  (Figure 2). The impact of the diffusion

layer on can be traced to eq. (19). Because of the large  the last term in eq. (19),

which  is  due  to  the  transport  of  thermal  energy  by  the  diffusion  currents,  is  much  less

important than the strong effect of the steep diffusion layer near the wall. This is because of

the strong dependence of the thermal conductivity on the steep gradient  near the wall

as depicted in  Figures 3, 4 as well  as 5,7  and 9,10 for the boundary condition  

(withdrawing concentration into the wall) and   (supplying concentration from the

wall).

In summary, the surface heat transfer rate for   in the present of diffusion

layer is approximated by

                                             eq. (34)

where is given in eq. (32). The expression (32) provide the distinct mechanism due 

q1(h) Scf

¢F (h)

F(0)=0

F(0)=2

Scf >>1

qW
* @1+f¥(qW,C

* ¢)f=0 +J (10- 3)

(qW,C
* ¢)f=0
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to thermal conduction enhancement, , and the modification due to convective heat 

transfer effect of steep diffusion layer (for ) on the values of  (see 

Tables 1-3, where  is given by eq. (22).  

The  surface  heat  transfer  rate  results  for  the  three  boundary  conditions  on  the  volume

concentration are indicated in Table 4. The condition  is where the porous matrix wall has the

wall concentration removed to zero volume fraction. in which case the diffusion current is

directed towards the wall.  The zero-volume flux at a solid wall is indicated by the , which

produces the same result  when  is imposed [12]. In this case, the freestream concentration is

maintained throughout the boundary layer and there is no diffusional effect.  The  case is

where the volume concentration at the wall is maintained to be twice that of the freestream

value,  the diffusional current is directed towards the outer regions of the boundary layer.

Arrows place next to the slope  indicate whether it increased or decreased  compared to the

zero-diffusion case of  for the nanofluid in question.  

Table 5 is constructed for the shear stress in the next section.

SHEAR STRESS

The shear stress on the wall is

    eq. (35)

(k* ¢)f=0

F(0)=0, 2 ¢q1(0) / ¢q0 (0)

¢q0 (0)

tW = m
¶u
¶y

æ

è
ç

ö

ø
÷
W

=m fU
U
n fx

mW
* ¢¢f (0)
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The base fluid shear stress at the wall is  . Using the perturbation

expansion of the form eq. (12) and the representation of the dynamic viscosity given by eq.

(9). The dimensionless shear stress is

tW
* =tW / tW, f =1+f¥[(m* ¢)f=0 + ¢¢f1(0) / ¢¢f0(0)]

           eq. (36)

where a slope is similarly defined as

              eq. (37)

The representation  is  similar  to  that  for  the  dimensionless  surface  heat  transfer  rate.  No

representation in terms of the skin friction coefficient is made, as this introduces extraneous

volume fractions associated with the free stream density. The results are summarized in Table

5 (arrows are placed next to the slopes ,  to indicate whether they increased or decreased

compared to the zero-diffusion case of ).

CONCLUSIONS

The effects of nonuniformities of the nanoparticle volume fraction in the boundary

layer are the subjects of the present work. Owing to the large Schmidt number, the direct

effect of diffusional transport of thermal energy has a negligible impact on the surface heat

transfer rate.  However, the volume fraction  non-uniformities have an impact on both the

nanofluid velocity and temperature profiles near the wall, thus affecting in no small way the

conduction  surface  heat  transfer  rate.  The  illustrative  cases  considered  is  the  complete

depletion of the volume concentration at the wall,  i.e.,  the free stream volume fraction is

reduced to zero at the wall ; the other contrasting condition is that the freestream volume

fraction value is doubled at the wall . The results of these cases are compared to the zero-flux

at a solid wall  for which .  Using the physically more reliable molecular dynamics estimates

of thermophysical properties for gold-water nanofluid [4, 21, 22] for the present discussion,

tW, f =m fU U /n fx ¢¢f0 (0)
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the surface heat transfer rate enhancement, from Table 4, is 2.4 times that of the uniform

concentration case (case 3). In magnitude estimates, the enhancement is about   at . In this

case, the skin friction rise (from Table 5) is . The value is about the same as that for the

uniform concentration case [12]. One can somewhat boldly generalize that if the nanofluid

volume concentration is lowered from that in the freestream, perhaps by a porous matrix wall,

then through the influence of the very thin concentration layer, the nanofluid velocity and

temperature profiles are so modified, though the dependence of the transport properties on

concentration,  that the surface heat transfer rate could be significantly increased and skin

friction rise decreased, much contrary to the pessimistic conclusion about nanofluids raised

by Venerus et al. [6].

Gold-water heat transfer experiments in gold-water nanofluid are recently reported by

Sabir  et  al.  [24].  Their  reported  surface  heat  transfer  rate  enhancement  is  much  more

spectacular  than  that  owing  to  thermal  conductivies  obtainable  from field  theories  (e.g.,

Maxwell [7], Rayleigh [8] and their  modifications [5]) and that owing to convective heat

transfer  of  dilute  concentration  of  nanofluids  considered  here  and  elsewhere  [12].  Thus,

further consideration of these results [24] is delayed until a better understanding of the nature

of their nanofluid and method of measurements could be attained.

An important assumption in boundary layer studies is that the freestream quantities

are taken as uniform, and this permitted the similarity considerations possible. Measurements

in micro-channels and tubes [9, 10], which are fed by tubes at the leading edge, for sure

renders  the  oncoming  freestream  quantities  nonuniform.  As  such,  similar  solutions  are

difficult to obtain. The importance of micro-channel and tube measurements bring out the

importance of the leading edge or entrance region, in which case, the boundary layer is used

to approximate the entrance region  [11, 12] before the freestream is affected downstream
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towards the developed region. In this situation, the boundary layer may well be worthy of

careful measurements in a nanofluid. It would thus not be necessary to use micro-channels for

measurements as the freestream in the boundary layer situation is unconfined and uniform.

One  could  think  of  the  initial  boundary  layer  experiments  in  nanofluid  channel  where

appropriately  instrumented  experiments  could  be  carried  out.  We  point  to  the  nanofluid

perturbation velocity and temperature profiles, that is, the difference between such profiles in

a nanofluid and those separately measured in the base fluid.

NOMENCLATURE

 nanofluid heat capacity [J/K]

 basefluid heat capacity [J/K]

 nanoparticle heat capacity [J/K]

 skin friction coefficient

 Brownian diffusion coefficient [m2/s]

 dimensionless, similarity stream function

 nanofluid static enthalpy [J]

c

cf

cp

Cf

D

f

h
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 static enthalpy of nanoparticles [J]

   nanoparticle phase diffusion 

 thermal conductivity [W/m·K]

 Boltzmann number [J/K]

 physical length scale [m]

, Lewis number

, Prandtl number

 heat transfer rate [W/m2.s]

 any physical quantity

 nanoparticle radius [m]

, Reynolds number

, Schmidt number

 absolute temperature [K]

 stream wise and normal-to-wall velocity components [m/s]

hp

k

kB

L

q

Q

rd

Scf =n f /D

T

u,u
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  U   velocity of the fluid [m/s]

 streamwise and normal-to-wall coordinates

 nanoparticle phase mass fraction

Greek Symbols

 similarity independent variable

δ diffusion layer

ξ 

ψ stream function

q =(T - T¥) (TW - T¥), dimensionless temperature

 thermal diffusivity [m²/s]

 dynamic viscosity [N·s/m2]

  kinematic viscosity [m2/s]

 nanofluid density [kg/m3]

 nanoparticle density [kg/m3]

 base fluid density [kg/m3]

x,y

xp

m

rp

r f

28



 shear stress [N/m2]

 nanoparticle phase volume fraction

, normalized volume concentration

Subscripts

C pertaining to thermal conduction

 pertaining to Brownian diffusion

 base fluid

 nanoparticle

 evaluated at the wall

∞ evaluated at the fluid

 at 

 zeroth order perturbation (the base fluid)

1  first order perturbation

mix  mixture

MD  molecular dynamics

Superscripts

*  dimensionless

t

f
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List of Tables

Table 1. Alumina-water nanofluid (mix)

F(0) ¢F (0) ¢¢f1(0) ¢q1(0)

0 9.2 - 0.76 - 2.36
1 0 0.65 1.30
2 - 9.2 0.88 4.95

Table 2. Gold-water nanofluid (mix)

F(0) ¢F (0) ¢¢f1(0) ¢q1(0)

0 9.2 1.79 - 2.73
1 0 2.61 - 0.92
2 - 9.2 3.43 0.87

Table 3. Gold-water nanofluid (MD)

F(0) ¢F (0) ¢¢f1(0) ¢q1(0)

0 9.2 - 1.87 - 8.2
1 0 1.44 3.94
2 - 9.2 4.76 16.08

Table 4.  Surface heat transfer rate 
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Table 5. Skin friction results: 
tW
* =1+f¥[(m* ¢)f=0 + ¢¢f1(0) / ¢¢f0(0)]

F(0)=0 : ¢F (0)=0 : F(0)=2 :

(m* ¢)f- 0 ¢¢f1(0) / ¢¢f0 (0) (tW
* ¢)f=0 ¢¢f1(0) / ¢¢f0 (0) (tW

* ¢)f=0 ¢¢f1(0) / ¢¢f0 (0) (tW
* ¢)f=0

Al2O3 - water]MIX 2.5 - 2.29 0.21¯ 1.96 4.46 2.65 5.15¯

Au- water]MIX 2.5 5.39 7.89¯ 7.86 10.36 10.33 12.83­

Au- water]MD 10 - 5.55 4.34¯ 4.33 14.33 14.34 24.34­

List of Figure captions

Figure 1. The base fluid velocity and temperature profiles: The Blasius function:
¢f0 (h) : _____________ , the Pohlhausen function q0 (h) : - - - - - - - - - . Prf =7.0 .

Figure 2. First order perturbation functions, alumina-water nanofluid.
 
F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................
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Prf =7, Scf =2 1́04
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Figure 3a. The first order perturbation functions, alumina-water nanofluid. F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 3b. Wall region, alumina-water nanofluid.
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Figure 4a. First order perturbation functions, alumina-water nanofluid. F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 4b. Wall region, alumina-water nanofluid. F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 5a. First order perturbation functions, gold-water nanofluid (mix.). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 5b. Wall region, gold-water nanofluid (mix.). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 6. First order perturbation functions, gold-water nanofluid (mix.).F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 7a. First order perturbation functions, gold-water nanofluid (mix.). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 7b. Wall region, gold-water nanofluid (mix.). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................
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Prf =7, Scf =2 1́04

.

Figure 8. First order perturbation functions, gold-water nanofluid (MD).F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 9a. First order perturbation functions, gold-water nanofluid (MD). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 9b. Wall region, gold-water nanofluid (MD). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 10a. First order perturbation functions, gold-water nanofluid (MD). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

.

Figure 10b. Wall region, gold-water nanofluid (MD). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 1. The base fluid velocity and temperature profiles: The Blasius function:

, the Pohlhausen function . .¢f0 (h) : _____________ q0 (h) : - - - - - - - - - Prf =7.0
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Figure 2. First order perturbation functions, alumina-water nanofluid.
 
F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 3a. The first order perturbation functions, alumina-water nanofluid. F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 3b. Wall region, alumina-water nanofluid.
 
F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 4a. First order perturbation functions, alumina-water nanofluid. F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

41



 Figure 4b. Wall region, alumina-water nanofluid. F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04

42



Figure 5a. First order perturbation functions, gold-water nanofluid (mix.). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 5b. Wall region, gold-water nanofluid (mix.). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 6. First order perturbation functions, gold-water nanofluid (mix.).F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 7a. First order perturbation functions, gold-water nanofluid (mix.). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 7b. Wall region, gold-water nanofluid (mix.). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 8. First order perturbation functions, gold-water nanofluid (MD).F(0;Scf )=1

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 9a. First order perturbation functions, gold-water nanofluid (MD). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 9b. Wall region, gold-water nanofluid (MD). F(0;Scf )=0

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 10a. First order perturbation functions, gold-water nanofluid (MD). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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Figure 10b. Wall region, gold-water nanofluid (MD). F(0;Scf )=2

¢f1(h) : ____________, q1(h;Prf ) : - - - - - - - - , F(h;Scf ) :....................

Prf =7, Scf =2 1́04
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